

Welcome to this ReMo Portal documentation!

This is the developer’s documentation for ReMo Portal.

About ReMo Portal

Mozilla Reps web tools and portal is the next phase of tools for the
Mozilla Reps program. Its purpose is to provide the required tools for
the day to day operations of the hundreds of Reps signed up in the
program. Diversity of the Reps and Geographic distribution are key
features of the program and those tools should help unify community
practices and tools of mozillians around the world.

To learn more about it and the release schedule visit ReMo Portal project page [https://wiki.mozilla.org/ReMo/Website].

For comments and/or questions about ReMo Portal or this documentation
please ping us on #remo-dev [http://mibbit.com/?channel=%23remo-dev&server=irc.mozilla.org].

Contents

	Installation
	VirtualEnv Installation
	Preparing Your System

	Build the Environment

	Docker Installation
	Preparing Your System

	Build the Environment

	Static files setup
	Installing LESS Preprocessor

	Settings

	Fire up the development server
	VirtualEnv Installation

	Creating demo data using factories
	Using factories

	remo factory classes

	Factory examples

Indices and tables

	Index

	Module Index

	Search Page

Installation

	VirtualEnv Installation

	Docker Installation

	Static files setup

	Fire up the development server

	Creating demo data using factories

VirtualEnv Installation

Getting your own development environment.

Preparing Your System

Prerequisites: You ‘ll need python, virtualenv, pip, git and mysql-server.

	For debian based systems:

$ sudo apt-get install python-dev python-pip python-virtualenv git mysql-server libmysqlclient-dev \
 libxslt1.1 libxml2 libxml2-dev libxslt1-dev libffi-dev

For other Linux distributions, you can consult the documentation of your distribution.

Build the Environment

When you want to start contributing...

	Fork the main ReMo repository [https://github.com/mozilla/remo/fork] (https://github.com/mozilla/remo) on GitHub.

	Clone your fork to your local machine:

$ git clone git@github.com:YOUR_USERNAME/remo.git remo
(lots of output - be patient...)

	Create your python virtual environment.:

$ cd remo/
$ virtualenv --no-site-packages venv

	Activate your python virtual environment.:

$ source venv/bin/activate

	Install development requirements.:

(venv)$ python ./bin/pipstrap.py
(venv)$ pip install --require-hashes --no-deps -r requirements/dev.txt

Note

When you activate your python virtual environment ‘venv’
(virtual environment’s root directory name) will be prepended
to your PS1.

Note

Since you are using a virtual environment all the python
packages you will install while the environment is active,
will be available only within this environment. Your system’s
python libraries will remain intact.

	Configure your local ReMo installation.:

(venv)$ cp settings/local.py-dist settings/local.py

	Choose a HMAC_KEY.

For development purposes you can uncomment the key ‘2012-06-15’
with HMAC_KEYS dictionary in your local.py:

HMAC_KEYS = {
 '2012-06-15': 'some key',
}

	Activate MailHide.

We use MailHide [https://developers.google.com/recaptcha/docs/mailhideapi] to
protect our users from spam. Open local.py under settings
directory and uncomment the following lines:

MAILHIDE_PUB_KEY = '02Ni54q--g1yltekhaSmPYHQ=='
MAILHIDE_PRIV_KEY = 'fe55a9921917184732077e3fed19d0be'

These keys are demo keys and will not decrypt emails on your
local installation but that’s OK if you are not working on a
related bug.

If you are to work on a MailHide related bug, register on
MailHide’s website [http://www.google.com/recaptcha/mailhide/apikey] for a valid
pair of keys.

	Setting up a MySQL database for development:

Install the MySQL server. Many Linux distributions provide an installable
package. If your OS does not, you can find downloadable install packages
on the MySQL site [http://dev.mysql.com/downloads/mysql/].

	Start the mysql client program as the mysql root user:

$ mysql -u root -p
Enter password:
mysql>

	Create a remo database:

mysql> create database remo character set utf8;

	Sync DB.:

(venv)$./manage.py migrate --noinput

	Create an admin account.

Create your own admin account:

(venv)$./manage.py createsuperuser

	Update product_details package.

Package product_details provides information about countries. We
use it in country selection lists. The information get pulled form
mozilla’s SVN, so we need to fetch it at least once. To update run:

(venv)$./manage.py update_product_details

	Collect static files.

Various packages provide static files. We need to collect them in
the STATIC_DIR:

(venv)$./manage.py collectstatic

	Load demo data (optional).

Depending on what you are going to develop you may need to have
some demo data.

To load demo users run (within your virtual env):

(venv)$./manage.py loaddata demo_users

To load demo functional areas run:

(venv)$./manage.py loaddata demo_functional_areas

To load demo events run:

(venv)$./manage.py loaddata demo_events

To fetch bugzilla bugs run:

(venv)$./manage.py fetch_bugs

Note

Fetching bugzilla bug requires a Mozilla Reps Admin account on
Bugzilla. Ping nemo-yiannis or tasos on #remo-dev to give you access if
your project requires it.

Docker Installation

Getting your own development environment.

Preparing Your System

	You need to install docker in your system. The installation guide [https://docs.docker.com/installation] covers many operating systems but for now we only support Linux.

	We are using an orchestration tool for docker called docker-compose [https://docs.docker.com/compose//] that helps us automate the procedure of initiating our docker containers required for development. Installation instructions can be found in Compose’s documentation [https://docs.docker.com/compose/install/]. Version required: 1.0.1 or newer.

Build the Environment

When you want to start contributing...

	Fork the main ReMo repository [https://github.com/mozilla/remo].

	Clone your fork to your local machine:

$ git clone git@github.com:YOUR_USERNAME/remo.git remo
(lots of output - be patient...)
$ cd remo

	Configure your local ReMo installation:

$ cp remo/settings/local.py-docker-dist remo/settings/local.py

	Choose a HMAC_KEY:

For development purposes you can uncomment the key ‘2012-06-15’
with HMAC_KEYS dictionary in your local.py:

HMAC_KEYS = {
 '2012-06-15': 'some key',
}

	Update the product details:

$ docker-compose run web python manage.py update_product_details -f

	Create the database tables and run the migrations:

$ docker-compose run web python manage.py migrate --noinput

	Create your own admin account:

$ docker-compose run web ./manage.py createsuperuser

	Add demo users:

$ docker-compose run web ./manage.py loaddata demo_users

	Add demo functional areas:

$ docker-compose run web ./manage.py loaddata demo_functional_areas

	Add demo events:

$ docker-compose run web ./manage.py loaddata demo_events

Running ReMo

	Run ReMo:

$ docker-compose up
(lots of output - be patient...)

	Develop!

Static files setup

Installing LESS Preprocessor

	Install Node.js for vagrant users

	Install prerequisites:

~$ sudo apt-get install g++ libssl-dev build-essential

	Download latest Node.js [http://nodejs.org/download/]
source code (eg.):

~$ wget http://nodejs.org/dist/v0.10.20/node-v0.10.20.tar.gz

	Extract source code:

~$ tar -zxf node-v0.10.20.tar.gz

	To build Node.js, run inside the extracted folder:

~$./configure
~$ make
~$ sudo make install

Note

For other development environments (eg. virtualenv), follow the Node.js
installation guide [https://github.com/joyent/node/wiki/Installation]
or use your package manager [https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager]
if a package is available.

	Install lessc using npm:

~$ sudo npm install -g less

Settings

	
COMPRESS_ENABLED

	If set to True django serves static files compressed.

	
COMPRESS_OFFLINE

	If set to True static files will be compressed outside request/response
loop. If set to False static files will be processed on user requests.

Fire up the development server

These are the steps to run locally your development server.

VirtualEnv Installation

	Start django devserver.

Within your virtual environment you can start django devserver by
running:

(venv)$./manage.py runserver

	Visit our local installation of the ReMo Portal.

You are done! Point Firefox to 127.0.0.1:8000.

Creating demo data using factories

In order to populate our development environment with data
in an automated way, we have implemented model factories using
Factory Boy [https://github.com/rbarrois/factory_boy].

Factory Boy is a fixtures replacement for Python. For
more details visit the project’s documentation [https://factoryboy.readthedocs.org/en/latest/].

Using factories

By default, model factories get instantiated using the associated model fields.
On top of that we provide additional attributes to add extra
functionality in object creation. For example:

	To create a single model object from a factory class (eg. UserFactory)
use the create() method:

user = UserFactory.create()

	To create multiple model objects at once (eg. 10) use the create_batch()
method:

users = UserFactory.create_batch(10)

	To customize your demo data you can override model attributes
(eg. username):

user = UserFactory.create(username='example')

remo factory classes

Here is the list of the implemented model factories we have in remo
and their associated PostGeneration methods [https://factoryboy.readthedocs.org/en/factory_boy-1.2.0/post_generation.html]
that help in some complex definitions of our models.

remo.profiles factory classes

	
	UserFactory

	
	
	groups: List of strings with group names to add to user groups

	(eg. ['Rep', 'Council'])

	
	UserProfileFactory

	
	functional_areas: List of FunctionalArea objects to add to
user functional areas

	random_functional_areas: Boolean. Populates UserProfile
with random functional areas of random length.

	initial_council: Boolean. UserProfile object has itself
as mentor.

	FunctionalAreaFactory

remo.events factory classes

	
	EventFactory

	
	categories: List of FunctionalArea objects to add to event
categories.

	random_categories: Boolean

	AttendanceFactory

remo.reports factory classes

	NGReportFactory

	ActivityFactory

	CampaignFactory

remo.remozilla factory classes

	
	BugFactory

	
	add_cc_users: List of users to add to bug cc field

remo.voting factory classes

	PollFactory

	VoteFactory

	RadioPollFactory

	RadioPollChoiceFactory

	RangePollFactory

	RangePollChoiceFactory

Factory examples

	To create_batch of users (eg. 10) with random functional areas that
belong to the initial council

from remo.profiles.tests import UserFactory

kwargs = {
 'groups': ['Reps', 'Mentor', 'Council'],
 'userprofile__random_functional_areas': True,
 'userprofile__initial_council': True
}

users = UserFactory.create_batch(10, **kwargs)

	To create_batch of past events (eg. 10) with random categories and
10 attendees

from remo.events.tests import EventFactory, AttendanceFactory

events = EventFactory.create_batch(10, random_categories=True)

for event in events:
 AttendanceFactory.create_batch(10, event=event)

Note

The above script creates new users for event.owner,
event.attendance.user and new swag and budget bugs.

	To create a poll with 10 radio and range poll choices

from remo.voting.tests import *

poll = PollFactory.create()

radio_poll = RadioPollFactory.create(poll=poll)
range_poll = RangePollFactory.create(poll=poll)

radio_poll_choices = RadioPollChoiceFactory.create_batch(10, radio_poll=radio_poll)
range_poll_choices = RangePollChoiceFactory.create_batch(10, range_poll=range_poll)

Index

 C

C

 	
 	COMPRESS_ENABLED

 	
 	COMPRESS_OFFLINE

Components

	Profiles
	Fields

	Avatar

	Registration and Login

	Creating new account for a Rep

	Creating new accounts en-masse

	Creating Demo accounts for testing

	Data Migration from Wiki

	API

	Mentorship

	Events

Profiles

Profiles store information about the Reps.

Fields

We are collecting the following information for each Rep:

	First Name

	Last Name

	Birth Year

	City

	Region

	Country

	Longitude, Latitude

	Display Name

	Mozillians Profile

	Private Email

	Bugzilla Email

	Twitter Account

	GPG-Key

	Jabber ID

	IRC Nickname

	IRC Channels in irc.m.o

	LinkedIn Profile URL

	Diaspora Profile URL

	Facebook Profile URL

	Personal Website URL

	Personal Blog Feed

	Rep Status (Admin, Counselor, Mentor, Rep)

Avatar

The portal does not provide functionality for users to upload or
change avatar images. User’s avatar is directly fetched from Gravatar [http://gravatar.com] by hashing user’s bugzilla email.

Registration and Login

All Mozilla Reps are able to login into the ReMo Portal using their
bugzilla email address and BrowerID [https://browserid.org]. No
registration is required. Users that are not approved Mozilla Reps
will not be able to login.

Creating new account for a Rep

Administrators and Mentors can create accounts for Reps using the
Account creation form. The form must be filled with the bugzilla
email of the Rep that owns the new account.

The new account is not activated on creation. User has to login
within two weeks to activate the account.

On creation Rep receives an invitation email to join the portal.

Creating new accounts en-masse

New accounts can be created massivelly using the following command:

$ python manage.py create_users <user_list.txt>

The user_list.txt parameter is a plain text file containing bugzilla
email addresses of Reps, one per line like this:

foo@bar.com
python@snakes.org
yummy@goodness.net

Accounts are not activated on creation. User has to login within two
weeks to activate the account.

On creation Rep receives an invitation email to join the portal.

Creating Demo accounts for testing

The following command:

$ python manage.py loaddata demo_users

creates a number of demo accounts with different permissions:

+-----------+-----------------------+----------+---------------+
| Username | Email | Password | Level |
+===========+=======================+==========+===============+
admin	admin@example.com	passwd	Administrator
counselor	counselor@example.com	passwd	Counselor
mentor	mentor@example.com	passwd	Mentor
rep	rep@example.com	passwd	Rep
rep2	rep2@example.com	passwd	Inactive Rep
+-----------+-----------------------+----------+---------------+

Warning

Do not run this command on production servers as it will impose
serious security risks.

Data Migration from Wiki

Lots of ReMo information already exists in Mozilla’s Wiki [https://wiki.mozilla.com/ReMo]. Information can be one-way
synchronized from wiki using the following command:

$ python manage.py wiki_migrate

Information is fetched using MediaWiki Ask API extension [https://secure.wikimedia.org/wikipedia/mediawiki/wiki/Extension:SMWAskAPI]. Only
new profiles will be created, existing profile will not be edited.

API

Profiles App provides an API for other applications to receive data
releated to Mozilla Reps.

Events

Mentorship

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to this ReMo Portal documentation!

 		Installation

 		VirtualEnv Installation

 		Preparing Your System

 		Build the Environment

 		Docker Installation

 		Preparing Your System

 		Build the Environment

 		Static files setup

 		Installing LESS Preprocessor

 		Settings

 		Fire up the development server

 		VirtualEnv Installation

 		Creating demo data using factories

 		Using factories

 		remo factory classes

 		Factory examples

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

